4.7 Article

CARBON-ENHANCED METAL-POOR STARS: CEMP-s and CEMP-no SUBCLASSES IN THE HALO SYSTEM OF THE MILKY WAY

Journal

ASTROPHYSICAL JOURNAL
Volume 788, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/788/2/180

Keywords

Galaxy: evolution; Galaxy: formation; Galaxy: halo; Galaxy: structure; stars: abundances; surveys

Funding

  1. Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) [PHY 08-22648]
  2. U.S. National Science Foundation
  3. Gemini Observatory
  4. Direct For Mathematical & Physical Scien
  5. Division Of Physics [1430152] Funding Source: National Science Foundation

Ask authors/readers for more resources

We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner-and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available