4.6 Article

Atomistic simulation of laser-pulse surface modification: Predictions of models with various length and time scales

Journal

JOURNAL OF APPLIED PHYSICS
Volume 117, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4916600

Keywords

-

Funding

  1. Russian Science Foundation [14-19-01487]
  2. Russian Science Foundation [14-19-01487] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

In this work, the femtosecond laser pulse modification of surface is studied for aluminium (Al) and gold (Au) by use of two-temperature atomistic simulation. The results are obtained for various atomistic models with different scales: from pseudo-one-dimensional to full-scale three-dimensional simulation. The surface modification after laser irradiation can be caused by ablation and melting. For low energy laser pulses, the nanoscale ripples may be induced on a surface by melting without laser ablation. In this case, nanoscale changes of the surface are due to a splash of molten metal under temperature gradient. Laser ablation occurs at a higher pulse energy when a crater is formed on the surface. There are essential differences between Al ablation and Au ablation. In the first step of shock-wave induced ablation, swelling and void formation occur for both metals. However, the simulation of ablation in gold shows an additional athermal type of ablation that is associated with electron pressure relaxation. This type of ablation takes place at the surface layer, at a depth of several nanometers, and does not induce swelling. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available