4.7 Article

INVESTIGATION OF HNCO ISOMER FORMATION IN ICE MANTLES BY UV AND THERMAL PROCESSING: AN EXPERIMENTAL APPROACH

Journal

ASTROPHYSICAL JOURNAL
Volume 788, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/788/1/19

Keywords

astrochemistry; infrared : ISM; ISM : molecules; methods : laboratory : solid state techniques : spectroscopic; ultraviolet : ISM

Funding

  1. INTA
  2. CONSOLIDER [CSD2009-00038]
  3. Spanish MICINN [AYA2011-29375]
  4. National Science Foundation under Associated Universities, Inc.

Ask authors/readers for more resources

Current gas-phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting their formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogs containing H2O, NH3, CO, HCN, CH3OH, CH4, and N-2 followed by warm-up under astrophysically relevant conditions. Only the H2O:NH3:CO and H2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2O:NH3:CO and H2O:HCN ices were simulated using the Interstellar Astrochemistry Chamber, a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform midinfrared spectroscopy in transmittance. A quadrupole mass spectrometer detected the desorption of the molecules in the gas phase. UV photoprocessing of H2O:NH3:CO and H2O:HCN ices lead to the formation of OCN-as a main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV photoprocessing of realistic simulated ice mantles might explain the observed abundances of these species in photodissociation regions, hot cores, and dark clouds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available