4.6 Article

Assessment of performance potential of MoS2-based topological insulator field-effect transistors

Journal

JOURNAL OF APPLIED PHYSICS
Volume 118, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4930930

Keywords

-

Funding

  1. NSF

Ask authors/readers for more resources

It was suggested that single-layer MoS2 at the 1T' phase is a topological insulator whose electronic structure can be modulated by a vertical electric field for field-effect transistor (FET) applications [X. Qian, J. Liu, L. Fu, and J. Li, Science 346, 1344 (2014)]. In this work, performance potential of FETs based on vertical field modulation of the topological edge states is assessed by using quantum transport device simulations. To perform efficient device simulations, a phenomenological Hamiltonian is first proposed and validated to capture the effects of electric fields. Because the ON-state conductance is determined by transport through gapless edge states with a long scattering mean free path and the OFF-state conductance by transport through the gapped bulk states, the ON/OFF ratio is sensitive to the channel length, which is different from conventional FETs. Although a high vertical electric field is required to modulate the topological edge state, a reasonably small subthreshold swing of 131 mV/dec can still be achieved for a practical value of the gate insulator thickness. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available