4.4 Article

Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori

Journal

JOURNAL OF BACTERIOLOGY
Volume 184, Issue 17, Pages 4800-4810

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.184.17.4800-4810.2002

Keywords

-

Categories

Ask authors/readers for more resources

Helicobacter pylori encodes three two-component systems and two orphan response regulators (RRs) that are predicted to be involved in transcriptional regulation. The HP1043 gene encodes an essential OmpR-like RR, 1043RR, for which no histidine kinase has been identified. Gel filtration and cross-linking experiments on the purified 1043RR protein reveals that this protein is a dimer and in vivo dimerization assays localize the dimerization to the N-terminal regulatory domain. DNA-binding studies have revealed two targets for specific binding of the 1043RR protein and moreover, phosphorylation of the protein was not needed for the activation of binding. Footprinting analysis demonstrated that the 1043RR protein binds to its own promoter, P10431 overlapping the -35 promoter element from positions -17 to -45, suggesting that this protein is autoregulatory. In addition, it binds at a similar location, spanning nucleotides from positions -22 to -51 at the promoter of the methyl-accepting chemotaxis tlpB gene, P-tlpB. A possible inverted repeat was identified in the binding sites of both promoters. In an attempt to overexpress 1043RR in H. pylori, the 10-fold induction in transcription of a second copy of HP1043 with use of an inducible promoter failed to increase cellular levels of the RR protein, suggesting that 1043RR is tightly regulated at a posttranscriptional level. The P-1043 and P-tlpB promoters were demonstrated to be coordinately regulated in response to growth phase in H. pylori. The essential role of HP1043 in encoding a cell cycle regulator is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available