4.7 Article

MAGNETIC FIELD AMPLIFICATION IN THE THIN X-RAY RIMS OF SN 1006

Journal

ASTROPHYSICAL JOURNAL
Volume 790, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/790/2/85

Keywords

acceleration of particles; ISM: individual objects (SN 1006); ISM: magnetic fields; ISM: supernova remnants; X-rays: ISM

Funding

  1. National Aeronautics and Space Administration through Chandra grant by the Chandra X-Ray Observatory Center [GO2-13066]
  2. NASA [NAS8-03060]

Ask authors/readers for more resources

Several young supernova remnants, including SN 1006, emit synchrotron X-rays in narrow filaments, hereafter thin rims, along their periphery. The widths of these rims imply 50-100 G fields in the region immediately behind the shock, far larger than expected for the interstellar medium compressed by unmodified shocks, assuming electron radiative losses limit rim widths. However, magnetic field damping could also produce thin rims. Here we review the literature on rim width calculations, summarizing the case for magnetic field amplification. We extend these calculations to include an arbitrary power-law dependence of the diffusion coefficient on energy, D. E. Loss-limited rim widths should shrink with increasing photon energy, while magnetic-damping models predict widths almost independent of photon energy. We use these results to analyze Chandra observations of SN 1006, in particular the southwest limb. We parameterize the FWHM in terms of energy as FWHM alpha E-nu(mE) Filament widths in SN 1006 decrease with energy; m(E) similar to -0.3 to -0.8, implying magnetic field amplification by factors of 10-50, above the factor of four expected in strong unmodified shocks. For SN 1006, the rapid shrinkage rules out magnetic damping models. It also favors short mean free paths (small diffusion coefficients) and strong dependence of D on energy (mu >= 1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available