4.4 Article

Emerita analoga (Stimpson) -: possible new indicator species for the phycotoxin domoic acid in California coastal waters

Journal

TOXICON
Volume 40, Issue 9, Pages 1259-1265

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0041-0101(02)00129-0

Keywords

domoic acid; harmful algal blooms; HPLC-UV; indicator species; mussel toxicity; Pseudo-nitzschia; sand crabs

Ask authors/readers for more resources

Blooms of domoic acid (DA) synthesizing diatoms (Pseudo-nitzschia spp.) have been associated with the death and injury of hundreds of marine shorebirds and mammals, exposed humans to potentially serious health risks, and threatened to significantly impact coastal fisheries and commerce dependent on marine resources. While indicator organisms are widely utilized to monitor for marine biotoxins like paralytic shellfish poisoning toxins, a reliable intertidal indicator species to monitor DA remains to be identified. Here we evaluate and confirm the utility of the common sand crab (Emerita analoga) as an indicator for DA in comparison with sea mussels (Mytilus californianus). Mussels and sand crabs, collected from natural populations in Santa Cruz, California (April 1999-February 2000), were tested for DA using the HPLC-UV method. Toxin loads in sand crabs ranged from below detectable limits to 13.4 mug DA g(-1) and coincided with the abundance of DA producing Pseudonitzschia species nearshore. Toxin levels in mussels collected during the study period were below HPLC-UV detectable limits. The rise and fall of DA in sand crabs in synchrony with Pseudo-nitzschia abundance, combined with this common intertidal species' accessibility and ease of DA extraction, clearly indicate the utility of sand crabs as a reliable, cost-effective monitoring tool for DA in the nearshore coastal environment. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available