4.7 Article

CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

Journal

ASTROPHYSICAL JOURNAL
Volume 777, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/777/1/67

Keywords

galaxies: evolution; galaxies: high-redshift; galaxies: starburst

Funding

  1. NSF [1106171]

Ask authors/readers for more resources

Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z similar or equal to 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for H alpha based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z similar or equal to 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available