4.7 Article

INTERIOR STRUCTURE OF WATER PLANETS: IMPLICATIONS FOR THEIR DYNAMO SOURCE REGIONS

Journal

ASTROPHYSICAL JOURNAL
Volume 768, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/768/2/156

Keywords

dynamo; magnetic fields; planetary systems; planets and satellites: general

Funding

  1. National Research Council of Canada (NSERC)
  2. Alfred P. Sloan Foundation

Ask authors/readers for more resources

Recent discoveries of water-rich, sub-Neptunian- to Neptunian-massed exoplanets with short-period orbits present a new parameter space for the study of exoplanetary dynamos. We explore the geometry of the dynamo source region within this parameter space using 1D interior structure models. We model planets with four chemically distinct layers that consist of (1) an iron core, (2) a silicate layer, (3) an H2O layer, and (4) an H/He envelope. By varying the total planetary mass in the range of 1-19 M-circle plus, the mass fraction of the H/He envelope between 0.1% and 5.1%, and the equilibrium temperature between 100 K and 1000 K, a survey of the parameter space for potential dynamo source region geometries is conducted. We find that due to the nature of the phase diagram of water at pressure and temperature conditions of planetary interiors, two different dynamo source region geometries are obtainable. Specifically, we find that smaller planets, and planets with thicker H/He envelopes, are likely to be in the regime of a thick-shelled dynamo. Massive planets, and planets with thin H/He envelopes, are likely to be in the regime of a thin-shelled dynamo. Also, small variations of these parameters can produce large interior structure differences. This implies the potential to constrain these parameters based on observations of a planet's magnetic field signature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available