4.4 Article

atonal is required for exoskeletal joint formation in the Drosophila, auditory system

Journal

DEVELOPMENTAL DYNAMICS
Volume 225, Issue 1, Pages 106-109

Publisher

WILEY-LISS
DOI: 10.1002/dvdy.10136

Keywords

audition; chordotonal organ; ear; hearing impairment; insect; mechanoreception; organ formation; peripheral nervous system; sound reception

Ask authors/readers for more resources

Hearing relies on the delicate arrangement of mechanoreceptor neurones and an acoustomechanical interface. The concerted action of these neural and non-neural components is essential to audition, raising the question of whether they also develop in a concerted way. Drosophila hears with its antennae. A specialized antennal joint allows the distal part of the antenna to vibrate in response to sound and, thus, to serve as the sound receiver. This receiver's vibration is transduced by a chordotonal sense organ (CHO) that is closely associated with the joint. Here, we report that atonal (ato), the proneural gene for CHOs, is required for the formation of this antennal joint. Biophysical measurements in hemi- and homozygous ato(1) mutant flies show that, in addition to eliminating the auditory CHO, loss of ato function makes the antennal receiver insensitive to sound, impairing its auditory function. Anatomically, the cause for this mechanical effect resides in the deprivation of mobile exoskeletal joint structures. Hence, ato, the homologue of mouse Math1, is required for the formation of both the auditory CHO and joint, providing a genetic link between the very neural and exoskeletal components that together transform fly antennae into ears. (C) 2002 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available