4.7 Article

THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

Journal

ASTROPHYSICAL JOURNAL
Volume 770, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/770/2/130

Keywords

galaxies: evolution; galaxies: halos; intergalactic medium; quasars: absorption lines

Funding

  1. NSF [AST-1109665]
  2. Alfred P. Sloan foundation
  3. National Science Foundation
  4. U.S. Department of Energy
  5. National Aeronautics and Space Administration
  6. Japanese Monbukagakusho
  7. Max Planck Society
  8. Higher Education Funding Council for England
  9. Division Of Astronomical Sciences
  10. Direct For Mathematical & Physical Scien [1109665] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of similar to 10(5) quasar spectra from the Sloan Digital Sky Survey and compile a sample of similar to 40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z similar to 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available