4.4 Article

Efficient discrete approximations of quantum gates

Journal

JOURNAL OF MATHEMATICAL PHYSICS
Volume 43, Issue 9, Pages 4445-4451

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1495899

Keywords

-

Ask authors/readers for more resources

Quantum compiling addresses the problem of approximating an arbitrary quantum gate with a string of gates drawn from a particular finite set. It has been shown that this is possible for almost all choices of base sets and, furthermore, that the number of gates required for precision epsilon is only polynomial in log 1/epsilon. Here we prove that using certain sets of base gates quantum compiling requires a string length that is linear in log 1/epsilon, a result which matches the lower bound from counting volume up to constant factor. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available