4.4 Review

Sound repetition rate in the human auditory pathway: Representations in the waveshape and amplitude of fMRI activation

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 88, Issue 3, Pages 1433-1450

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2002.88.3.1433

Keywords

-

Funding

  1. NIDCD NIH HHS [P01 DC000119-24, T32DC-00038, T32 DC000038-12, R03DC-03122, P01DC-00119] Funding Source: Medline

Ask authors/readers for more resources

Sound repetition rate plays an important role in stream segregation, temporal pattern recognition, and the perception of successive sounds as either distinct or fused. This study was aimed at elucidating the neural coding of repetition rate and its perceptual correlates. We investigated the representations of rate in the auditory pathway of human listeners using functional magnetic resonance imaging (fMRI), an indicator of population neural activity. Stimuli were trains of noise bursts presented at rates ranging from low (1-2/s; each burst is perceptually distinct) to high (35/s; individual bursts are not distinguishable). There was a systematic change in the form of fMRI response rate-dependencies from midbrain to thalamus to cortex. In the inferior colliculus, response amplitude increased with increasing rate while response waveshape remained unchanged and sustained. In the medial geniculate body, increasing rate produced an increase in amplitude and a moderate change in waveshape at higher rates (from sustained to one showing a moderate peak just after train onset). In auditory cortex (Heschl's gyrus and the superior temporal gyrus), amplitude changed somewhat with rate, but a far more striking change occurred in response waveshape-low rates elicited a sustained response, whereas high rates elicited an unusual phasic response that included prominent peaks just after train onset and offset. The shift in cortical response waveshape from sustained to phasic with increasing rate corresponds to a perceptual shift from individually resolved bursts to fused bursts forming a continuous (but modulated) percept. Thus at high rates, a train forms a single perceptual event, the onset and offset of which are delimited by the on and off peaks of phasic cortical responses. While auditory cortex showed a clear, qualitative correlation between perception and response waveshape, the medial geniculate body showed less correlation (since there was less change in waveshape with rate), and the inferior colliculus showed no correlation at all. Overall, our results suggest a population neural representation of the beginning and the end of distinct perceptual events that is weak or absent in the inferior colliculus, begins to emerge in the medial geniculate body, and is robust in auditory cortex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available