4.7 Article

THE INTERACTION OF TWO CORONAL MASS EJECTIONS: INFLUENCE OF RELATIVE ORIENTATION

Journal

ASTROPHYSICAL JOURNAL
Volume 778, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/778/1/20

Keywords

magnetohydrodynamics (MHD); methods: numerical; shock waves; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: heliosphere

Funding

  1. NSF [AGS-1239699, AGS-1239704, AGS-1135432]
  2. NASA [NNX13AH94G, SMD-12-3360, SMD-13-3919]
  3. Directorate For Geosciences
  4. Div Atmospheric & Geospace Sciences [1239704, 1135432] Funding Source: National Science Foundation
  5. Div Atmospheric & Geospace Sciences
  6. Directorate For Geosciences [1140211, 1239699] Funding Source: National Science Foundation
  7. NASA [NNX13AH94G, 470907] Funding Source: Federal RePORTER

Ask authors/readers for more resources

We report on a numerical investigation of two coronal mass ejections (CMEs) that interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90 degrees from one simulation to the next. Each magnetohydrodynamic simulation is performed in three dimensions with the Space Weather Modeling Framework in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180 degrees. Due to reconnection, the second CME only appears as an extended tail, and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic-cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available