4.7 Article

THE NATURE OF THE SECOND PARAMETER IN THE IRX-beta RELATION FOR LOCAL GALAXIES

Journal

ASTROPHYSICAL JOURNAL
Volume 773, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/773/2/174

Keywords

galaxies: star formation; infrared: galaxies; ultraviolet: galaxies

Funding

  1. NASA
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. U.S. Department of Energy
  5. National Aeronautics and Space Administration
  6. Japanese Monbukagakusho
  7. Max Planck Society
  8. Higher Education Funding Council for England

Ask authors/readers for more resources

We present an analysis of 98 galaxies of low-dust content, selected from the Spitzer Local Volume Legacy survey, aimed at examining the relation between the ultraviolet (UV) color and dust attenuation in normal star-forming galaxies. The IRX-beta diagram relates the total dust attenuation in a galaxy, traced by the far-IR (FIR) to UV ratio, to the observed UV color, indicated by beta. Previous research has indicated that while starburst galaxies exhibit a relatively tight IRX-beta relation, normal star-forming galaxies do not, and have a much larger spread in the total-IR to far-UV (FUV) luminosity for a fixed UV color. We examine the role that the age of the stellar population plays as the second parameter responsible for the observed deviation and spread of star-forming galaxies from the starburst relation. We model the FUV to FIR spectral energy distribution of each galaxy according to two broad bins of star formation history (SFH): constant and instantaneous burst. We find clear trends between stellar population mean age estimators (extinction-corrected FUV/NIR, U - B, and EW(H alpha)) and the UV color beta; the trends are mostly driven by the galaxies best-described by instantaneous burst populations. We also find a significant correlation between beta and the mean age directly determined from the best-fit instantaneous models. As already indicated by other authors, the UV attenuation in star-forming galaxies may not be recovered with the UV color alone and is highly influenced by the stellar population's mean age and SFH. Overall, the scatter in the IRX-beta diagram is better correlated with beta than with the perpendicular distance, d(p).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available