4.2 Article

Accumulation of imidazolone, pentosidine and Nε-(carboxymethyl)lysine in hippocampal CA4 pyramidal neurons of aged human brain

Journal

PATHOLOGY INTERNATIONAL
Volume 52, Issue 9, Pages 563-571

Publisher

BLACKWELL PUBLISHING ASIA
DOI: 10.1046/j.1320-5463.2002.01390.x

Keywords

advanced glycation end products; aging; brain; imidazolone; N-epsilon-(carboxymethyl)lysine; pentosidine

Categories

Ask authors/readers for more resources

Previous studies from our laboratory demonstrated that N-epsilon-(carboxymethyl)lysine (CML), one of the major advanced glycation end products (AGE), was accumulated in human pyramidal neurons in the hippocampus in an age-dependent manner. This suggests a potential link between AGE-accumulation and the aging process in neurons. The purpose of the present study was to examine whether this notion could be extended to other AGE structures, such as imidazolone and pentosidine. This was done using 19 human brains that were not affected by dementia. The immunohistochemical survey on distribution in brain tissues of imidazolone and pentosidine was carried out with monoclonal antibodies specific for imidazolone and pentosidine. A parallel control experiment was carried out with anti-CML antibody. The results showed that pentosidine and imidazolone were localized in neurons in different areas of human brain tissue, especially in neurons of CA4 in the hippocampus. The characteristic distribution of pentosidine and imidazolone is very similar to that of CML. Furthermore, when the accumulation of these AGE structures was compared with the age of individual brains it was found that accumulation of imidazolone, pentosidine and CML in the CA4 region increased with age. These findings taken together support the notion that the accumulation of AGE structures in the CA4 region might be closely related to the aging process in neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available