4.7 Article

Distortion-free diffusion tensor imaging of cranial nerves and of inferior temporal and orbitofrontal white matter

Journal

NEUROIMAGE
Volume 17, Issue 1, Pages 497-506

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/nimg.2002.1171

Keywords

MRI; diffusion tensor imaging; fiber anatomy; cranial nerves

Ask authors/readers for more resources

The main impact of functional neuroimaging has been its ability to locate neuronal activity either directly (EEG, MEG) or through the hemodynamic response caused by neuronal activity (PET, fMRI). In the past decade functional neuroimaging has been extended to investigate how brain regions interact, using the concepts of functional and effective connectivity. These concepts are further strengthened by estimates of anatomical connectivity of the same subject. A tool to determine anatomical connectivity in vivo may be provided by diffusion tensor imaging (DTI) methods. These can be used to determine the orientation of fiber bundles in white matter on the basis of the diffusion characteristics of water. Commonly, DTI data are acquired using echo planar imaging which suffers from susceptibility artifacts in orbitofrontal and inferior temporal cortex. Here we demonstrate the use of an alternative pulse sequence, diffusion-weighted single-shot STEAM, for assessing fiber orientation in orbitofrontal cortex and the cranial nerves. The scope of DTI needs to be extended to these structures to investigate psychiatric disorders in which orbitofrontal pathology or temporo-frontal disconnection have been postulated. (C) 2002 Elsevier Science (USA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available