4.7 Article

THE ARAUCARIA PROJECT. THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM LATE-TYPE ECLIPSING BINARIES

Journal

ASTROPHYSICAL JOURNAL
Volume 780, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/780/1/59

Keywords

binaries: eclipsing; galaxies: individual (SMC); stars: late-type

Funding

  1. Polish National Science Center grant MAESTRO [2012/06/A/ST9/00269]
  2. Foundation for Polish Science (FNP)
  3. BASAL Centro de Astrofisica y Tecnologias Afines (CATA) [PFB-06/2007]
  4. NTT telescopes in La Silla [074.D-0318, 074.D-0505, 082.D-0499, 083.D-0549, 084.D-0591, 086.D-0078, 091, D-0469(A)]
  5. CNTAC programme [CN2010B-060]
  6. European Research Council under the European Community [246678]

Ask authors/readers for more resources

We present a distance determination to the Small Magellanic Cloud (SMC) based on an analysis of four detached, long-period, late-type eclipsing binaries discovered by the Optical Gravitational Lensing Experiment (OGLE) survey. The components of the binaries show negligible intrinsic variability. A consistent set of stellar parameters was derived with low statistical and systematic uncertainty. The absolute dimensions of the stars are calculated with a precision of better than 3%. The surface brightness-infrared color relation was used to derive the distance to each binary. The four systems clump around a distance modulus of (m - M) = 18.99 with a dispersion of only 0.05 mag. Combining these results with the distance published by Graczyk et al. for the eclipsing binary OGLE SMC113.3 4007, we obtain a mean distance modulus to the SMC of 18.965 +/- 0.025 (stat.) +/- 0.048 (syst.) mag. This corresponds to a distance of 62.1 +/- 1.9 kpc, where the error includes both uncertainties. Taking into account other recent published determinations of the SMC distance we calculated the distance modulus difference between the SMC and the Large Magellanic Cloud equal to 0.458 +/- 0.068 mag. Finally, we advocate mu(SMC) = 18.95 +/- 0.07 as a new canonical value of the distance modulus to this galaxy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available