4.7 Article

ALMA OBSERVATIONS OF THE HH 46/47 MOLECULAR OUTFLOW

Journal

ASTROPHYSICAL JOURNAL
Volume 774, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/774/1/39

Keywords

Herbig-Haro objects; ISM: clouds; ISM: individual objects (HH 46, HH 47); ISM: jets and outflows; stars: formation

Funding

  1. NSF [AST-0845619]
  2. CONICYT [PFB-06]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Astronomical Sciences [0845619] Funding Source: National Science Foundation

Ask authors/readers for more resources

The morphology, kinematics, and entrainment mechanism of the HH 46/47 molecular outflow were studied using new ALMA Cycle 0 observations. Results show that the blue and red lobes are strikingly different. We argue that these differences are partly due to contrasting ambient densities that result in different wind components having a distinct effect on the entrained gas in each lobe. A 29 point mosaic, covering the two lobes at an angular resolution of about 3, detected outflow emission at much higher velocities than previous observations, resulting in significantly higher estimates of the outflow momentum and kinetic energy than previous studies of this source, using the CO(1-0) line. The morphology and the kinematics of the gas in the blue lobe are consistent with models of outflow entrainment by a wide-angle wind, and a simple model describes the observed structures in the position-velocity diagram and the velocity-integrated intensity maps. The red lobe exhibits a more complex structure, and there is evidence that this lobe is entrained by a wide-angle wind and a collimated episodic wind. Three major clumps along the outflow axis show velocity distribution consistent with prompt entrainment by different bow shocks formed by periodic mass ejection episodes which take place every few hundred years. Position-velocity cuts perpendicular to the outflow cavity show gradients where the velocity increases toward the outflow axis, inconsistent with outflow rotation. Additionally, we find evidence for the existence of a small outflow driven by a binary companion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available