4.4 Article

Liquid film atomization on wall edges - Separation criterion and droplets formation model

Journal

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1493811

Keywords

-

Ask authors/readers for more resources

In order to predict the fuel mixture preparation inside the cylinder of port fuel injection engines, a model for the aerodynamic stripping of the fuel film deposited on the manifold walls is discussed, and a model for the fuel film separation and atomization near the sharp edges is developed. A separation criterion is set up using an analogy with Rayleigh-Taylor instabilities driven by the inertial forces of the liquid film. To determine the physical parameters of the resulting droplets, a liquid sheet atomization scheme is used. The critical value for the separation criterion is adjusted using experimental data obtained in 2D wind tunnel equipped with different steps shaped as a valve seat, and reproducing the main characteristics of the intake of spark ignition engine. CFD simulations are performed using the KMB code, a modified version of KIVA-2 already including a stochastic Lagrangian description of the spray, and an Eulerian liquid film model. Computations results for different operating conditions are in good agreement with the images of film separation and measured droplet size distributions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available