4.7 Article

A theory of network alteration for the Mullins effect

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 50, Issue 9, Pages 2011-2028

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-5096(01)00136-3

Keywords

rubber material; stress softening; polymer network; finite strain; constitutive behaviour

Ask authors/readers for more resources

This paper reports on the development of a new network alteration theory to describe the Mullins effect. The stress-softening phenomenon that occurs in rubber-like materials during cyclic loading is analysed from a physical point of view. The Mullins effect is considered to be a consequence of the breakage of links inside the material. Both filler-matrix and chain interaction links are involved in the phenomenon. This new alteration theory is implemented by modifying the eight-chains constitutive equation of Arruda and Boyce (J. Mech. Phys. Solids 41 (2) (1993) 389). In the present method the parameters of the eight-chains model, denoted C-R and N in the bibliography, become functions of the maximum chain stretch ratio. The accuracy of the resulting constitutive equation is demonstrated on cyclic uniaxial experiments for both natural rubbers and synthetic elastomers. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available