4.7 Article

RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

Journal

ASTROPHYSICAL JOURNAL
Volume 746, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/746/1/43

Keywords

stars: low-mass; stars: magnetic field; stars: rotation

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [RE 1664/4-1, RE 1664/9-1]
  2. STFC [ST/H00307X/1]
  3. Direct For Mathematical & Physical Scien [847477] Funding Source: National Science Foundation
  4. Division Of Astronomical Sciences [847477] Funding Source: National Science Foundation
  5. STFC [ST/H00307X/1] Funding Source: UKRI
  6. Science and Technology Facilities Council [ST/H00307X/1] Funding Source: researchfish

Ask authors/readers for more resources

Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from the large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available