4.7 Article

CHEMISTRY IN DISKS. VII. FIRST DETECTION OF HC3N IN PROTOPLANETARY DISKS

Journal

ASTROPHYSICAL JOURNAL
Volume 756, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/756/1/58

Keywords

circumstellar matter; protoplanetary disks; radio lines: stars; stars: individual (DM Tau, LkCa 15, GO Tau, MWC 480)

Funding

  1. PCMI, the French national program for the Physics and Chemistry of the Interstellar Medium
  2. Deutsche Forschungsgemeinschaft [SPP 1385, SE 1962/1-2]
  3. INSU/CNRS (France)
  4. MPG (Germany)
  5. IGN (Spain)

Ask authors/readers for more resources

Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30 m telescope by using the new broadband correlator (fast Fourier Transform Spectrometer) to search for so far undetected molecules in the protoplanetary disks surrounding the T Tauri stars DM Tau, GO Tau, LkCa 15, and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30 m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10(12) cm(-2). We also obtain stringent upper limits on CCS (N < 1.5 x 10(12) cm(-3)). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen-and sulfur-bearing molecule observations. The observed column densities of HC3N are typically two orders of magnitude lower than the existing predictions and appear to be lower in the presence of strong UV flux, suggesting that the molecular chemistry is sensitive to the UV penetration through the disk. The CCS upper limits reinforce our model with low elemental abundance of sulfur derived from other sulfur-bearing molecules (CS, H2S, and SO).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available