4.7 Article

CHANDRA/HETGS OBSERVATIONS OF THE BRIGHTEST FLARE SEEN FROM Sgr A*

Journal

ASTROPHYSICAL JOURNAL
Volume 759, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/759/2/95

Keywords

accretion, accretion disks; black hole physics; radiation mechanisms: non-thermal

Funding

  1. National Aeronautics and Space Administration through the Smithsonian Astrophysical Observatory [SV3-73016]
  2. National Aeronautics Space Administration [NAS8-03060]
  3. NASA [NAS8-00128, GO2-13110A]
  4. Netherlands Organization for Scientific Research (NWO) Vidi Fellowship
  5. European Community's Seventh Framework Programme (FP7) under Black Hole Universe [ITN 215212]
  6. ESA Member States

Ask authors/readers for more resources

Starting in 2012, we began an unprecedented observational program focused on the supermassive black hole in the center of our Galaxy, Sgr A*, utilizing the High Energy Transmission Grating Spectrometer (HETGS) instrument on the Chandra X-Ray Observatory. These observations will allow us to measure the quiescent X-ray spectra of Sgr A* for the first time at both high spatial and spectral resolution. The X-ray emission of Sgr A*, however, is known to flare roughly daily by factors of a few to ten times over quiescent emission levels, with rarer flares extending to factors of greater than 100 times quiescence. Here we report an observation performed on 2012 February 9 wherein we detected what are the highest peak flux and fluence flare ever observed from Sgr A*. The flare, which lasted for 5.6 ks and had a decidedly asymmetric profile with a faster decline than rise, achieved a mean absorbed 2-8 keV flux of (8.5 +/- 0.9) x 10(-12) erg cm(-2) s(-1). The peak flux was 2.5 times higher, and the total 2-10 keV emission of the event was approximately 10(39) erg. Only one other flare of comparable magnitude, but shorter duration, has been observed in Sgr A* by XMM-Newton in 2002 October. We perform spectral fits of this Chandra-observed flare and compare our results to the two brightest flares ever observed with XMM-Newton. We find good agreement among the fitted spectral slopes (Gamma similar to 2) and X-ray absorbing columns (N-H similar to 15 x 10(22) cm(-2)) for all three of these events, resolving prior differences (which are most likely due to the combined effects of pileup and spectral modeling) among Chandra and XMM-Newton observations of Sgr A* flares. We also discuss fits to the quiescent spectra of Sgr A*.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available