4.7 Article

KEPLER-20: A SUN-LIKE STAR WITH THREE SUB-NEPTUNE EXOPLANETS AND TWO EARTH-SIZE CANDIDATES

Journal

ASTROPHYSICAL JOURNAL
Volume 749, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/749/1/15

Keywords

eclipses; planetary systems; stars: individual (Kepler-20, KIC 6850504, 2MASS J19104752+4220194)

Funding

  1. NASA's Science Mission Directorate
  2. NASA through JPL/Caltech
  3. W. M. Keck Foundation

Ask authors/readers for more resources

We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASS J19104752+4220194. From high-resolution spectroscopy of the star, we find a stellar effective temperature T-eff = 5455 +/- 100 K, a metallicity of [Fe/H] = 0.01 +/- 0.04, and a surface gravity of log g = 4.4 +/- 0.1. We combine these estimates with an estimate of the stellar density derived from the transit light curves to deduce a stellar mass of M-* = 0.912 +/- 0.034M(circle dot) and a stellar radius of R-* = 0.944(-0.095)(+0.060) R-circle dot. For three of the transit signals, we demonstrate that our results strongly disfavor the possibility that these result from astrophysical false positives. We accomplish this by first identifying the subset of stellar blends that reproduce the precise shape of the light curve and then using the constraints on the presence of additional stars from high angular resolution imaging, photometric colors, and the absence of a secondary component in our spectroscopic observations. We conclude that the planetary scenario is more likely than that of an astrophysical false positive by a factor of 2x10(5) (Kepler-20b), 1x10(5) (Kepler-20c), and 1.1x10(3) (Kepler-20d), sufficient to validate these objects as planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is independently disfavored by the achromaticity of the transit: from Spitzer data gathered at 4.5 mu m, we infer a ratio of the planetary to stellar radii of 0.075 +/- 0.015 (Kepler-20c) and 0.065 +/- 0.011 (Kepler-20d), consistent with each of the depths measured in the Kepler optical bandpass. We determine the orbital periods and physical radii of the three confirmed planets to be 3.70 days and 1.91(-0.21)(+0.12) R-circle plus for Kepler-20b, 10.85 days and 3.07(-0.31)(+0.20) R-circle plus for Kepler-20c, and 77.61 days and 2.75(-0.30)(+0.17) R-circle plus for Kepler-20d. From multi-epoch radial velocities, we determine the masses of Kepler-20b and Kepler-20c to be 8.7 +/- 2.2M(circle plus) and 16.1 +/- 3.5M(circle plus), respectively, and we place an upper limit on the mass of Kepler-20d of 20.1M(circle plus) (2 sigma).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available