4.7 Article

Lipid compositional differences of small, dense low-density lipoprotein particle influence its oxidative susceptibility: Possible implication of increased risk of coronary artery disease in subjects with phenotype B

Journal

METABOLISM-CLINICAL AND EXPERIMENTAL
Volume 51, Issue 9, Pages 1081-1087

Publisher

W B SAUNDERS CO
DOI: 10.1053/meta.2002.34695

Keywords

-

Ask authors/readers for more resources

An increased susceptibility of low-density lipoprotein (LDL) to lipid peroxidative modification may be a key factor in the higher risk of coronary artery disease (CAD) among subjects with phenotype B. Compositional differences in the LDL particle may also be implicated in its atherogenicity and, in particular, may be associated with varying degrees of oxidative susceptibility of LDL, although this remains unclear. We hypothesized that the oxidative susceptibility of small, dense LDL was directly influenced by its lipid composition, which may lead to an increased risk of CAD in subjects with phenotype B. To test this hypothesis, we compared the differences in lipid compositions of LDL particles from subjects with phenotype A and those with phenotype B, and investigated the direct association of lipid composition with susceptibility to lipid peroxidative modification in 102 subjects who underwent a coronary angiographic examination. Subjects with phenotype B (n = 52) had a significantly higher incidence of CAD than subjects with phenotype A (77% v 44%; P < .005). In comparing the oxidative susceptibility of LDL, the lag time was significantly reduced in subjects with phenotype B compared to phenotype A (48.7 +/- 8.6 v 41.5 +/- 5.5 minutes; P < .0001). In addition, the lag time showed a positive correlation with LDL-peak particle diameter (PPD) (r = 0.324, P < .005). Lipid composition per LDL particle was expressed as the ratio of lipid content to apolipoprotein B (apoB) content (wt/wt). Subjects with phenotype B showed a significant depletion in the contents of free-cholesterol (FC), cholesterol ester (CE), and phospholipid (PL) per particle compared to subjects with phenotype A, although there was no significant difference in the triglyceride (TG) content per LDL particle. Except for TG, the lipid content per LDL particle showed a significant positive correlation with lag time in all subjects, Moreover, increased susceptibility of small, dense LDL to lipid peroxidative modification was most strongly associated with a depleted FC content per LDL particle. In conclusion, the greater risk of CAD in subjects with phenotype B may result, in part, from increased susceptibility to lipid peroxidative modification of LDL that is depleted in lipid contents, especially FC content per LDL particle. Copyright 2002, Elsevier Science (USA). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available