4.7 Article

ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

Journal

ASTROPHYSICAL JOURNAL
Volume 761, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/0004-637X/761/1/13

Keywords

distance scale; cosmological parameters; cosmology: observations; large-scale structure of universe

Funding

  1. U.S. Department of Energy's Office of High Energy Physics [DE-AC02-05CH11231]
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. U.S. Department of Energy Office of Science
  5. University of Arizona
  6. Brazilian Participation Group
  7. Brookhaven National Laboratory
  8. University of Cambridge
  9. University of Florida
  10. French Participation Group
  11. German Participation Group
  12. Instituto de Astrofisica de Canarias
  13. Michigan State/Notre Dame/JINA Participation Group
  14. Johns Hopkins University
  15. Lawrence Berkeley National Laboratory
  16. Max Planck Institute for Astrophysics
  17. New Mexico State University
  18. New York University
  19. Ohio State University
  20. Pennsylvania State University
  21. University of Portsmouth
  22. Princeton University
  23. Spanish Participation Group
  24. University of Tokyo
  25. University of Utah
  26. Vanderbilt University
  27. University of Virginia
  28. University of Washington
  29. Yale University
  30. ICREA Funding Source: Custom
  31. STFC [ST/I001204/1, ST/H002774/1] Funding Source: UKRI
  32. Science and Technology Facilities Council [ST/H002774/1, ST/I001204/1] Funding Source: researchfish

Ask authors/readers for more resources

We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over similar to 10,000 deg(2) between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D-A(z)/r(s) = 9.212(-0.404)(+0.416) at z = 0.54, and therefore D-A(z) = 1411 +/- 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D-A(z) is 1.4 sigma higher than what is expected for the concordance Lambda CDM, in accordance to the trend of other spectroscopic BAO measurements for z greater than or similar to 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available