4.5 Article

Effect of ozone and nitrogen dioxide on the permeability of bronchial epithelial cell cultures of non-asthmatic and asthmatic subjects

Journal

CLINICAL AND EXPERIMENTAL ALLERGY
Volume 32, Issue 9, Pages 1285-1292

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-2745.2002.01435.x

Keywords

atopic asthma; epithelial permeability; nitrogen dioxide; ozone

Ask authors/readers for more resources

Background Although epidemiological as well as in vivo exposure studies suggest that ozone (O-3) and nitrogen dioxide (NO2) may play a role in airway diseases such as asthma, the underlying mechanisms are not clear. Objective Our aim was to investigate the effect of O-3 and NO2 on the permeability of human bronchial epithelial cell (HBEC) cultures obtained from non-atopic non-asthmatic (non-asthmatics) and atopic mild asthmatic (asthmatics) individuals. Methods We cultured HBECs from bronchial biopsies of non-asthmatics and asthmatics, and exposed these for 6 h to air, 10 to 100 parts per billion (p.p.b.) O-3, or to 100 to 400 p.p.b. NO2, and assessed changes in electrical resistance (ER) and movement of 14C-BSA across the cell cultures. Results Although exposure to either O-3 or NO2 did not alter the permeability of HBEC cultures of non-asthmatics, 10 to 100 p.p.b. O-3 and 400 p.p.b. NO2 significantly decreased the ER of HBEC cultures of asthmatics, when compared with exposure to air. Additionally, 10, 50 and 100 p.p.b. O-3 led to a significant increase in the movement of 14C-BSA across asthmatic HBEC cultures, after 6 h of exposure (medians = 1.73%; P < 0.01, 1.50%; P < 0.05 and 1.53%, P < 0.05, respectively), compared with air exposed cultures (median = 0.89%). Similarly, exposure for 6 h to both 200 and 400 p.p.b. NO2 significantly increased the movement of 14C-BSA across asthmatic HBEC cultures, when compared with air exposure. A comparison of data obtained from the two study groups demonstrated that 10 to 100 p.p.b. O-3- and 200 to 400 p.p.b. NO2 -induced epithelial permeability was greater in cultures of asthmatics compared with non-asthmatics. Conclusion These results suggest that HBECs of asthmatics may be more susceptible to the deleterious effects of these pollutants. Whether in patients with asthma the greater susceptibility of bronchial epithelial cells to O-3 and NO2 contributes to the development of the disease, or is a secondary characteristic of this condition, remains to be determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available