4.7 Article

Spatial/spectral endmember extraction by multidimensional morphological operations

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 40, Issue 9, Pages 2025-2041

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2002.802494

Keywords

automated endmember extraction; mathematical morphology; morphological eccentricity index; multidimensional analysis; spatial/spectral integration; spectral mixture model

Ask authors/readers for more resources

Spectral mixture analysis provides an efficient mechanism for the interpretation and classification of remotely sensed multidimensional imagery. It aims to identify a set of reference signatures (also known as endmembers) that can be used to model the reflectance spectrum at each pixel of the original image. Thus, the modeling is carried out as a linear combination of a finite number of ground components. Although spectral mixture models have proved to be appropriate for the purpose of large hyperspectral dataset subpixel analysis, few methods are available in the literature for the extraction of appropriate endmembers; in spectral unmixing. Most approaches have been designed from a spectroscopic viewpoint and, thus, tend to neglect the existing spatial correlation between pixels. This paper presents a new automated method that performs unsupervised pixel purity determination and endmember extraction from multidimensional datasets; this is achieved by using both spatial and spectral information in a combined manner. The method is based on mathematical morphology, a classic image processing technique that can be applied to the spectral domain while being able to keep its spatial characteristics. The proposed methodology is evaluated through a specifically designed framework that uses both simulated and real hyperspectral data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available