4.7 Article

EVOLUTION OF BLISTER-TYPE H II REGIONS IN A MAGNETIZED MEDIUM

Journal

ASTROPHYSICAL JOURNAL
Volume 745, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/745/2/158

Keywords

H II regions; ISM: clouds; ISM: kinematics and dynamics; ISM: magnetic fields; magnetohydrodynamics (MHD); radiative transfer; stars: formation

Funding

  1. Alfred P. Sloan Foundation
  2. NSF [AST-0807739, CAREER-0955300]
  3. NASA through ATFP [NNX09AK31G]
  4. Spitzer Space Telescope theoretical research program grant
  5. Chandra Space Telescope grant
  6. NSF MRI [0521566]
  7. Direct For Mathematical & Physical Scien [0521566] Funding Source: National Science Foundation
  8. Division Of Astronomical Sciences [0521566] Funding Source: National Science Foundation

Ask authors/readers for more resources

We use the three-dimensional Athena ionizing radiation-magnetohydrodynamics code to simulate blister-type H II regions driven by stars on the edge of magnetized gas clouds. We compare these to simulations of spherical H II regions where the star is embedded deep within a cloud, and to non-magnetized simulations of both types, in order to compare their ability to drive turbulence and influence star formation. We find that magnetized blister H II regions can be very efficient at injecting energy into clouds. This is partly a magnetic effect: the magnetic energy added to a cloud by an H II region is comparable to or larger than the kinetic energy, and magnetic fields can also help collimate the ejected gas, increasing its energy yield. As a result of these effects, a blister H II region expanding into a cloud with a magnetic field perpendicular to its edge injects twice as much energy by 5 Myr as a non-magnetized blister H II region driven by a star of the same luminosity. Blister H II regions are also more efficient at injecting kinetic energy than spherical H II regions, due to the recoil provided by escaping gas, but not as much as predicted by some analytic approximations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available