4.7 Article

MERGERS OF UNEQUAL-MASS GALAXIES: SUPERMASSIVE BLACK HOLE BINARY EVOLUTION AND STRUCTURE OF MERGER REMNANTS

Journal

ASTROPHYSICAL JOURNAL
Volume 749, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/749/2/147

Keywords

black hole physics; galaxies: evolution; galaxies: interactions; galaxies: nuclei; gravitational waves

Funding

  1. Higher Education Commission (HEC) of Pakistan
  2. Deutsches Zentrum fur Luft-und Raumfahrt (through LISA Germany)
  3. Chinese Academy of Sciences [2009S1-5]
  4. Deutsche Forschungsgemeinschaft (DFG) at the Ruprecht-Karls-Universitat Heidelberg [SFB 881]
  5. NASU under the Main Astronomical Observatory GRID/GPU
  6. NASU
  7. University of Heidelberg
  8. German Excellence Initiative
  9. Ministry of Finance of People's Republic of China [ZDYZ2008-2]
  10. DFG
  11. Volkswagen Foundation [I/80 041-043, I/81 396]
  12. Ministry of Science, Research and the Arts of Baden Wurttemberg, Germany [23.219-439/30, /36]

Ask authors/readers for more resources

Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the final parsec problem (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on the so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q similar to 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is similar to 1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass similar to 10(6) M-circle dot are less than 1 Gyr and for those at the upper end of SMBH masses 10(9) M-circle dot are 1-2 Gyr for less eccentric binaries whereas they are less than 1 Gyr for highly eccentric binaries. SMBH binaries are thus expected to be promising sources of GWs at low and high redshifts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available