4.8 Article

Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids

Journal

NUCLEIC ACIDS RESEARCH
Volume 30, Issue 17, Pages 3712-3721

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkf451

Keywords

-

Ask authors/readers for more resources

Peptide nucleic acid (PNA) is a synthetic DNA analogue that is resistant to nucleases and proteases and binds with exceptional affinity to RNA. Because of these properties PNA has the potential to become a powerful therapeutic agent to be used in vivo. Until now, however, the use of PNA in vivo has not been much investigated. Here, we have attempted to reduce the expression of the bcr/abl oncogene in chronic myeloid leukaemia KYO-1 cells using a 13mer PNA sequence (asPNA) designed to hybridise to the b(2)a(2) junction of bcr/abl mRNA. To enhance cellular uptake asPNA was covalently linked to the basic peptide VKRKKKP (NLS-asPNA). Moreover, to investigate the cellular uptake by confocal microscopy, both PNAs were linked by their N-terminus to fluorescein (FL). Studies of uptake, carried out at 4 and 37degreesC on living KYO-1 cells stained with hexidium iodide, showed that both NLS-asPNA-FL and asPNA-FL were taken up by the cells, through a receptor-independent mechanism. The intracellular amount of NLS-asPNA-FL was about two to three times higher than that of asPNA-FL. Using a semi-quantitative RT- PCR technique we found that 10 muM asPNA and NLS-asPNA reduced the level of b(2)a(2) mRNA in KYO-1 cells to 20 +/- 5% and 60 +/- 10% of the control, respectively. Western blot analysis showed that asPNA promoted a significant inhibition of p210(BCR/ABL) protein: residual protein measured in cells exposed for 48 h to asPNA was similar to35% of the control. Additionally, asPNA impaired cell growth to 50 +/- 5% of the control and inhibited completion of the cell cycle. In summary, these results demonstrate that a PNA 13mer is taken up by KYO-1 cells and is capable of producing a significant and specific down-regulation of the bcr/abl oncogene involved in leukaemogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available