4.7 Article

THE CORRELATIONS BETWEEN OPTICAL VARIABILITY AND PHYSICAL PARAMETERS OF QUASARS IN SDSS STRIPE 82

Journal

ASTROPHYSICAL JOURNAL
Volume 758, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/758/2/104

Keywords

accretion, accretion disks; galaxies: active; galaxies: nuclei; quasars: general; techniques: photometric

Funding

  1. NSFC [11033001]
  2. 973 program in China [2007CB8154505]
  3. Alfred P. Sloan Foundation
  4. National Science Foundation
  5. U.S. Department of Energy
  6. National Aeronautics and Space Administration
  7. Japanese Monbukagakusho
  8. Max Planck Society
  9. Higher Education Funding Council for England
  10. American Museum of Natural History
  11. Astrophysical Institute Potsdam
  12. University of Basel
  13. University of Cambridge
  14. Case Western Reserve University
  15. University of Chicago
  16. Drexel University
  17. Fermilab
  18. Institute for Advanced Study
  19. Japan Participation Group
  20. Johns Hopkins University
  21. Joint Institute for Nuclear Astrophysics
  22. Kavli Institute for Particle Astrophysics and Cosmology
  23. Korean Scientist Group
  24. Chinese Academy of Sciences (LAMOST)
  25. Los Alamos National Laboratory
  26. Max-Planck-Institute for Astronomy (MPIA)
  27. Max- Planck-Institute for Astrophysics (MPA)
  28. New Mexico State University
  29. Ohio State University
  30. University of Pittsburgh
  31. University of Portsmouth
  32. Princeton University
  33. United States Naval Observatory
  34. University of Washington

Ask authors/readers for more resources

We investigate the optical variability of 7658 quasars from SDSS Stripe 82. Taking advantage of a larger sample and relatively more data points for each quasar, we estimate variability amplitudes and divide the sample into small bins of redshift, rest-frame wavelength, black hole mass, Eddington ratio, and bolometric luminosity, respectively, to investigate the relationships between variability and these parameters. An anti-correlation between variability and rest-frame wavelength is found. The variability amplitude of radio-quiet quasars shows almost no cosmological evolution, but that of radio-loud ones may weakly anti-correlate with redshift. In addition, variability increases as either luminosity or Eddington ratio decreases. However, the relationship between variability and black hole mass is uncertain; it is negative when the influence of Eddington ratio is excluded, but positive when the influence of luminosity is excluded. The intrinsic distribution of variability amplitudes for radio-loud and radio-quiet quasars are different. Both radio-loud and radio-quiet quasars exhibit a bluer-when-brighter chromatism. Assuming that quasar variability is caused by variations of accretion rate, the Shakura-Sunyaev disk model can reproduce the tendencies of observed correlations between variability and rest-frame wavelength, luminosity as well as Eddington ratio, supporting that changes of accretion rate play an important role in producing the observed optical variability. However, the predicted positive correlation between variability and black hole mass seems to be inconsistent with the observed negative correlation between them in small bins of Eddington ratio, which suggests that other physical mechanisms may still need to be considered in modifying the simple accretion disk model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available