4.7 Article

QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

Journal

ASTROPHYSICAL JOURNAL
Volume 756, Issue 2, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/0004-637X/756/2/163

Keywords

atlases; galaxies: evolution; galaxies: general; methods: data analysis

Funding

  1. Spanish MICIN project Estallidos [AYA 2010-21887-C04-04]
  2. Mexican Research Council (CONACYT) [CB-2005-01-49847, 2007-01-84746, 2008-103365-F]
  3. Alfred P. Sloan Foundation
  4. National Science Foundation
  5. U.S. Department of Energy
  6. National Aeronautics and Space Administration
  7. Japanese Monbukagakusho
  8. Max Planck Society
  9. Higher Education Funding Council for England
  10. CNPq
  11. CAPES
  12. FAPESP
  13. France-Brazil CAPES/Cofecub program
  14. [MICINN CSD2006-00070]

Ask authors/readers for more resources

We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code starlight. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available