4.7 Article

X-RAY PHOTOIONIZED BUBBLE IN THE WIND OF VELA X-1 PULSAR SUPERGIANT COMPANION

Journal

ASTROPHYSICAL JOURNAL
Volume 757, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/757/2/162

Keywords

hydrodynamics; radiative transfer; stars: early-type; stars: mass-loss; stars: winds, outflows

Funding

  1. [GA CR 205/08/0003]
  2. [MUNI/A/0968/2009]

Ask authors/readers for more resources

Vela X-1 is the archetype of high-mass X-ray binaries (HMXBs), composed of a neutron star and a massive B supergiant. The supergiant is a source of a strong radiatively driven stellar wind. The neutron star sweeps up this wind and creates a huge amount of X-rays as a result of energy release during the process of wind accretion. Here, we provide detailed NLTE models of the Vela X-1 envelope. We study how the X-rays photoionize the wind and destroy the ions responsible for the wind acceleration. The resulting decrease of the radiative force explains the observed reduction of the wind terminal velocity in a direction to the neutron star. The X-rays create a distinct photoionized region around the neutron star filled with a stagnating flow. The existence of such photoionized bubbles is a general property of HMXBs. We unveil a new principle governing these complex objects, according to which there is an upper limit to the X-ray luminosity the compact star can have without suspending the wind due to inefficient line driving.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available