4.4 Article

Effects of precursor concentration on the optical and electrical properties of SnXSY thin films prepared by plasma-enhanced chemical vapour deposition

Journal

SEMICONDUCTOR SCIENCE AND TECHNOLOGY
Volume 17, Issue 9, Pages 931-937

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0268-1242/17/9/305

Keywords

-

Ask authors/readers for more resources

We have carried out the electrical and optical characterization of thin films of compounds based on Sn-S bonds (SnS2, Sn2S3), prepared by plasma-enhanced chemical vapour deposition (PECVD), as a function of the relative concentration of the precursor vapours, SnCl4 and H2S, keeping all other deposition parameters constant. In all studied cases, the deposited films were formed by polycrystalline materials. The optical bandgap values of deposited materials were calculated from optical transmittance and reflectance measurements. The SnS2 compound produced under certain deposition conditions has a forbidden bandgap around 2.2 eV. This compound shows n-type electrical conductivity, whose dark value at room temperature is 2 X 10(-2) (Omega cm)(-1). Also, it shows the typical semiconductor dependence of its electrical conductivity on the temperature with an activation energy of about 0.15 eV. However, thin films of a mixture of SnS2 and Sn2S3 compounds were deposited with higher values of the relative concentration of source vapours than those used to obtain the SnS2 compound. The optical bandgap shows a decreasing trend as the relative concentration increases. A similar trend is observed for dark electrical conductivity. These results create the opportunity to use SnxSy compounds in thin films for building heterojunction solar cells prepared completely by PECVD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available