4.8 Article

Double jeopardy: Both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive

Journal

PLANT CELL
Volume 14, Issue 9, Pages 2059-2069

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.002337

Keywords

-

Ask authors/readers for more resources

In plants, the role of mitogen-activated protein kinase (MAPK) in reactive oxygen species (ROS)-based signal transduction processes is elusive. Despite the fact that ROS can induce MAPK activation, no direct genetic evidence has linked ROS-induced MAPK activation with the hypersensitive response, a form of programmed cell death. In tobacco, the major ROS-induced MAPK is salicylate-induced protein kinase (SIPK). We found through gain-of-function and loss-of-function approaches that both overexpression and RNA interference-based suppression of SIPK render the plant sensitive to ROS stress. Transgenic lines overexpressing a norphosphorylatable version of SIPK were not ROS sensitive. Analysis of the MAPK activation profiles in ROS-stressed transgenic and wild-type plants revealed a striking interplay between SIPK and another MAPK (wound-induced protein kinase [WIPK]) in the different kinotypes. During continuous ozone exposure, abnormally prolonged activation of SIPK was seen in the SIPK-overexpression genotype, without WIPK activation, whereas strong and stable activation of WIPK was observed in the SIPK-suppressed lines. Thus, one role of activated SIPK in tobacco cells upon ROS stimulation appears to be control of the inactivation of WIPK.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available