4.7 Article

EXPLORING THE DIVERSITY OF GROUPS AT 0.1 < z < 0.8 WITH X-RAY AND OPTICALLY SELECTED SAMPLES

Journal

ASTROPHYSICAL JOURNAL
Volume 756, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/756/2/139

Keywords

galaxies: groups: general; X-rays: galaxies: clusters

Funding

  1. NSERC
  2. STFC [ST/I001166/1, ST/I00162X/1, ST/H008519/1, ST/I001573/1, ST/F002289/1] Funding Source: UKRI
  3. Science and Technology Facilities Council [ST/H008519/1, ST/I00162X/1, ST/F002289/1, ST/I001573/1, ST/I001166/1] Funding Source: researchfish

Ask authors/readers for more resources

We present the global group properties of two samples of galaxy groups containing 39 high-quality X-ray-selected systems and 38 optically (spectroscopically) selected systems in coincident spatial regions at 0.12 < z < 0.79. The total mass range of the combined sample is similar to(10(12)-5) x 10(14) M-circle dot. Only nine optical systems are associable with X-ray systems. We discuss the confusion inherent in the matching of both galaxies to extended X-ray emission and of X-ray emission to already identified optical systems. Extensive spectroscopy has been obtained and the resultant redshift catalog and group membership are provided here. X-ray, dynamical, and total stellar masses of the groups are also derived and presented. We explore the effects of utilizing different centers and applying three different kinds of radial cut to our systems: a constant cut of 1 Mpc and two r(200) cuts, one based on the velocity dispersion of the system and the other on the X-ray emission. We find that an X-ray-based r(200) results in less scatter in scaling relations and less dynamical complexity as evidenced by results of the Anderson-Darling and Dressler-Schectman tests, indicating that this radius tends to isolate the virialized part of the system. The constant and velocity dispersion based cuts can overestimate membership and can work to inflate velocity dispersion and dynamical and stellar mass. We find L-X-sigma and M-stellar-L-X scaling relations for X-ray and optically selected systems are not dissimilar. The mean fraction of mass found in stars, excluding intracluster light, for our systems is similar to 0.014 with a logarithmic standard deviation of 0.398 dex. We also define and investigate a sample of groups which are X-ray underluminous given the total group stellar mass. For these systems the fraction of stellar mass contributed by the most massive galaxy is typically lower than that found for the total population of groups implying that there may be less intragroup medium contributed from the most massive member in these systems. Eighty percent of 15 underluminous groups have less than 40% of their stellar mass in the most massive galaxy which happens in less than 1% of cases with samples matched in stellar mass, taken from the combined group catalog.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available