4.7 Review

Non-Hermitian electronic theory and applications to clusters

Journal

Publisher

ELSEVIER
DOI: 10.1016/S0370-1573(02)00143-6

Keywords

clusters; valence ionization; resonance states; ab initio calculations

Ask authors/readers for more resources

Electronically excited cations, generated by inner-valence ionization of small molecules, relax in general by dissociation and photon emission. Autoionization is forbidden for energetic reasons. The situation changes fundamentally in an inner-valence ionized cluster, which releases its excess energy by emitting an electron. This novel process, referred to as Intemolecular Coulombic Decay, is characterized by an efficient energy transfer between monomers in the cluster. The decay is ultrafast, taking place on a femtosecond time scale. Theoretical tools are developed to predict the properties, in particular lifetimes, of molecular systems undergoing electronic decay. These methods are applied to study the relaxation of inner-valence holes in clusters. In order to enable a treatment of the scattering and the many-particle problem with standard electronic correlation methods for bound states, a complex absorbing potential is added to the Hamiltonian. Conceptual as well as practical aspects of this procedure are discussed in detail. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available