4.7 Article

PROBING NON-SPHERICAL DARK HALOS IN THE GALACTIC DWARF GALAXIES

Journal

ASTROPHYSICAL JOURNAL
Volume 755, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/755/2/145

Keywords

dark matter; galaxies: dwarf; galaxies: kinematics and dynamics; galaxies: structure; Local Group

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology in Japan [20340039, 18072001]
  2. JSPS
  3. Grants-in-Aid for Scientific Research [20340039] Funding Source: KAKEN

Ask authors/readers for more resources

We construct axisymmetric mass models for dwarf spheroidal (dSph) galaxies in the Milky Way to obtain plausible limits on the non-spherical structure of their dark halos. This is motivated by the fact that the observed luminous parts of the dSphs are actually non-spherical and cold dark matter models predict non-spherical virialized dark halos. Our models consider velocity anisotropy of stars <(v(R)(2))over bar>/<(v(phi)(2))over bar>, which can vary with the adopted cylindrical coordinates under the assumption <(v(z)(2))over bar> = <(v(R)(2))over bar> for simplicity, and also include an inclination of the system as a fitting parameter to explain the observed line-of-sight velocity dispersion profile. Applying these models to six of the bright dSphs in the Milky Way, we find that the best-fitting cases for most of the dSphs yield oblate and flattened dark halos, irrespective of assumed density profiles in their central parts. We also find that the total mass of the dSphs enclosed within a spheroid with major-axis length of 300 pc varies from 10(6) M-circle dot to 10(7) M-circle dot, contrary to the conclusion from spherical models. This suggests the importance of considering shapes of dark halos in mass models of the dSphs. It is also found that dark halos of the Galactic dSphs may be more flattened than N-body predictions, thereby implying our yet incomplete understanding of baryonic and/or non-baryonic dark matter physics in dwarf galaxy scales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available