4.7 Article

PHYSICS OF COEVOLUTION OF GALAXIES AND SUPERMASSIVE BLACK HOLES

Journal

ASTROPHYSICAL JOURNAL
Volume 755, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/755/1/28

Keywords

accretion, accretion disks; black hole physics; galaxies: active; galaxies: star formation; ISM: kinematics and dynamics; supernovae: general

Funding

  1. [NNX08AH31G]
  2. [NNX11AI23G]

Ask authors/readers for more resources

A new physically based model for coevolution of galaxies and supermassive black holes (SMBHs) is presented. The evolutionary track starts with an event that triggers a significant starburst in the central region of a galaxy. In this model, the main SMBH growth takes place in the post-starburst phase, fueled by recycled gas from inner bulge stars in a self-regulated fashion on a timescale that is substantially longer than 100 Myr and at a diminishing Eddington ratio with time. We argue that the SMBH cannot gorge itself during the starburst phase, despite the abundant supply of cold gas, because star formation (SF) is a preferred mode of gas consumption over accretion to the central SMBH in such an environment. We also show that feedback from SF is at least as strong as that from an active galactic nucleus (AGN); thus, if SF is in need of being quenched, AGN feedback generally does not play the primary role. The predicted relation between SMBH mass and bulge mass/velocity dispersion is consistent with observations. A clear prediction is that early-type galaxy hosts of high-Eddington-rate AGNs are expected to be light blue to green in optical color, gradually evolving to the red sequences with decreasing AGN luminosity. A suite of falsifiable predictions and implications with respect to relationships between various types of galaxies, AGNs, and others are made. For those where comparisons to extant observations are possible, the model appears to be in good standing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available