4.7 Article

A SECOND-ORDER BIAS MODEL FOR THE LOGARITHMIC HALO MASS DENSITY

Journal

ASTROPHYSICAL JOURNAL
Volume 753, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/753/1/11

Keywords

cosmology: theory; dark matter; galaxies: halos; large-scale structure of universe; methods: numerical

Funding

  1. Kyung Hee University [KHU-20100179]
  2. Ministry of Education, Science & Technology (MoST), Republic of Korea [PG016902] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. National Research Foundation of Korea [00000005] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

We present an analytic model for the local bias of dark matter halos in a Lambda CDM universe. The model uses the halo mass density instead of the halo number density and is searched for various halo mass cuts, smoothing lengths, and redshift epochs. We find that, when the logarithmic density is used, the second-order polynomial can fit the numerical relation between the halo mass distribution and the underlying matter distribution extremely well. In this model, the logarithm of the dark matter density is expanded in terms of log halo mass density to the second order. The model remains excellent for all halo mass cuts (from M-cut = 3 x 10(11) to 3 x 10(12) h (1) M-circle dot), smoothing scales (from R = 5 h(-1) Mpc to 50h(-1) Mpc), and redshift ranges (from z = 0 to 1.0) considered in this study. The stochastic term in the relation is found to be not entirely random, but a part of the term can be determined by the magnitude of the shear tensor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available