4.7 Article

ORGANIC MOLECULES AND WATER IN THE INNER DISKS OF T TAURI STARS

Journal

ASTROPHYSICAL JOURNAL
Volume 733, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/733/2/102

Keywords

accretion, accretion disks; circumstellar matter; infrared: stars; protoplanetary disks; stars: pre-main sequence

Funding

  1. NASA

Ask authors/readers for more resources

We report high signal-to-noise Spitzer Infrared Spectrograph spectra of a sample of 11 classical T Tauri stars. Molecular emission from rotational transitions of H2O and OH and rovibrational bands of simple organic molecules (CO2, HCN, C2H2) is common among the sources in the sample. The emission shows a range in both flux and line-to-continuum ratio for each molecule and in the flux ratios of different molecular species. The gas temperatures (200-800 K) and emitting areas we derive are consistent with the emission originating in a warm disk atmosphere in the inner planet formation region at radii <2 AU. The H2O emission appears to form under a limited range of excitation conditions, as demonstrated by the similarity in relative strengths of H2O features from star to star and the narrow range in derived temperature and column density. Emission from highly excited rotational levels of OH is present in all stars; the OH emission flux increases with the stellar accretion rate, and the OH/H2O flux ratio shows a relatively small scatter. We interpret these results as evidence for OH production via FUV photodissociation of H2O in the disk surface layers. No obvious explanation is found for the observed range in the relative emission strengths of different organic molecules or in their strength with respect to water. We put forward the possibility that these variations reflect a diversity in organic abundances due to star-to-star differences in the C/O ratio of the inner disk gas. Stars with the largest HCN/H2O flux ratios in our sample have the largest disk masses. While larger samples are required to confirm this, we speculate that such a trend could result if higher mass disks are more efficient at planetesimal formation and sequestration of water in the outer disk, leading to enhanced C/O ratios and abundances of organic molecules in the inner disk. A comparison of our derived HCN-to-H2O column density ratio to comets, hot cores, and outer T Tauri star disks suggests that the inner disks are chemically active.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available