4.7 Article

THE MAJOR AND MINOR GALAXY MERGER RATES AT z < 1.5

Journal

ASTROPHYSICAL JOURNAL
Volume 742, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/742/2/103

Keywords

galaxies: evolution; galaxies: high-redshift; galaxies: interactions; galaxies: structure

Funding

  1. NOAO
  2. W. M. Keck Foundation
  3. Australian Government
  4. Office of Science of the U.S. Department of Energy

Ask authors/readers for more resources

Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates and a cosmologically averaged observability timescale < T-obs(z)> for identifying galaxy mergers. While many have counted galaxy mergers using a variety of techniques, < T-obs(z)> for these techniques have been poorly constrained. We address this problem by calibrating three merger rate estimators with a suite of hydrodynamic merger simulations and three galaxy formation models. We estimate < T-obs(z)> for (1) close galaxy pairs with a range of projected separations, (2) the morphology indicator G - M-20, and (3) the morphology indicator asymmetry Lambda A. Then, we apply these timescales to the observed merger fractions at z < 1.5 from the recent literature. When our physically motivated timescales are adopted, the observed galaxy merger rates become largely consistent. The remaining differences between the galaxy merger rates are explained by the differences in the ranges of the mass ratio measured by different techniques and differing parent galaxy selection. The major merger rate per unit comoving volume for samples selected with constant number density evolves much more strongly with redshift (alpha (1 + z)(+3.0 +/- 1.1)) than samples selected with constant stellar mass or passively evolving luminosity (alpha (1 + z)(+0.1 +/- 0.4)). We calculate the minor merger rate (1:4 < M-sat/M-primary less than or similar to 1:10) by subtracting the major merger rate from close pairs from the total merger rate determined by G - M-20. The implied minor merger rate is similar to 3 times the major merger rate at z similar to 0.7 and shows little evolution with redshift.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available