4.7 Article

DETERMINING THE STRUCTURE OF SOLAR CORONAL LOOPS USING THEIR EVOLUTION

Journal

ASTROPHYSICAL JOURNAL
Volume 733, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/733/1/59

Keywords

Sun: corona; Sun: UV radiation

Funding

  1. NASA [NAS 5-38099]
  2. NSF
  3. NSF Center for Integrated Space Weather Modeling (CISM)

Ask authors/readers for more resources

Despite significant progress in understanding the dynamics of the corona, there remain several unanswered questions about the basic physical properties of coronal loops. Recent observations from different instruments have yielded contradictory results about some characteristics of coronal loops, specifically as to whether the observed loops are spatially resolved. In this paper, we examine the evolution of coronal loops through two extreme-ultraviolet filters and determine if they evolve as a single cooling strand. We measure the temporal evolution of eight active region loops previously studied and found to be isothermal and resolved by Aschwanden & Nightingale. All eight loops appear in hotter TRACE filter images (Fe XII 195 angstrom) before appearing in the cooler (Fe IX/Fe x 171 angstrom) TRACE filter images. We use the measured delay between the two filters to calculate a cooling time and then determine if that cooling time is consistent with the observed lifetime of the loop. We do this twice: once when the loop appears (rise phase) and once when it disappears (decay phase). We find that only one loop appears consistent with a single cooling strand and hence could be considered to be resolved by TRACE. For the remaining seven loops, their observed lifetimes are longer than expected for a single cooling strand. We suggest that these loops could be formed of multiple cooling strands, each at a different temperature. These findings indicate that the majority of loops observed by TRACE are unresolved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available