4.7 Article

THE STELLAR MASS CONTENT OF SUBMILLIMETER-SELECTED GALAXIES

Journal

ASTROPHYSICAL JOURNAL
Volume 740, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/740/2/96

Keywords

galaxies: evolution; galaxies: formation; galaxies: high-redshift; infrared: galaxies

Funding

  1. STFC
  2. Royal Society
  3. Leverhulme Trust
  4. Science and Technology Facilities Council [ST/I001573/1, ST/J000647/1] Funding Source: researchfish
  5. Division Of Astronomical Sciences
  6. Direct For Mathematical & Physical Scien [909159] Funding Source: National Science Foundation
  7. STFC [ST/J000647/1, ST/I001573/1] Funding Source: UKRI

Ask authors/readers for more resources

We present a new study of stellar mass in a sample of similar to 70 submillimeter-selected galaxies (SMGs) with accurate spectroscopic redshifts. We fit combinations of stellar population synthesis models and power laws to the galaxies' observed-frame optical through mid-IR spectral energy distributions (SEDs) to separate stellar emission from non-stellar near-IR continuum. The availability of spectroscopic redshifts significantly enhances our ability to determine unambiguously not only the mass and luminosity of SMGs, but also the presence and contribution of non-stellar emission to their SEDs. By separating the stellar emission from the non-stellar near-IR continuum, we find that similar to 50% of our sample have non-stellar contributions of less than 10% in rest-frame H band and similar to 10% of our sample have non-stellar contributions greater than 50%. We find that the K-band luminosity of the non-stellar continuum emission is correlated with hard X-ray luminosity, indicating an active galactic nucleus (AGN) origin of the emission. Upon subtracting this AGN-contributed continuum component from all of the galaxies in our sample, we determine a lower median stellar mass for SMGs than previous studies, similar to 7 x 10(10) M-circle dot. We use constraints of the starburst timescale from molecular gas studies to estimate the amount of fading our sample would undergo if they passively evolve after the starburst terminates. The results suggest that typical SMGs, while among the most massive galaxies at z similar to 2, are likely to produce descendants of similar mass and luminosity to L* galaxies in the local universe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available