4.7 Article

Spontaneous epileptiform activity mediated by GABAA receptors and gap junctions in the rat hippocampal slice following long-term exposure to GABAB antagonists

Journal

NEUROPHARMACOLOGY
Volume 43, Issue 4, Pages 563-572

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0028-3908(02)00156-9

Keywords

hypersynchrony; GABA(B) receptors; nonsynaptic; gap junctions; quinine; carbonic anhydrase

Ask authors/readers for more resources

Recent evidence suggests that excessive GABA(A) receptor-mediated transmission can lead to neuronal hyperexcitability and hyper-synchrony. We show now that exposure of a rat hippocampal slice to GABA(B) receptor antagonists (CGP 55845A and CGP 35348) in the absence of ionotropic glutamatergic transmission leads to a progressive synchronization of spontaneous interneuronal activity. In about 30% of over 200 slices examined, the GABA(A)-mediated spontaneous activity produced field responses in the CA1 soma region with a positive-going phase of up to 5 mV, followed by a long-lasting negative deflection with a simultaneous extracellular K+ transient. These bicarbonate-dependent GABAergic ictal-like events (GIEs) were associated with biphasic (hyperpolarizing/depolarizing) intracellular responses and with synchronous bursting of the pyramidal neurons. The GIEs could not be reversed by wash-out of the GABA(B) receptor antagonists or by baclofen, but they were inhibited by agonists acting on presynaptic mu-opioid and cannabinoid (CB1) receptors pointing to a down-regulation of presynaptic GABA(B) receptors. GIEs were dependent on intracellular carbonic anhydrase, and potentiated by maneuvers that increase intracellular pH. They were blocked by the Cx36-specific gap-junction (gj) blocker, quinine/quinidine, as well as by the broad-spectrum gj blocker, octanol. These data suggest that enhanced GABAergic activity with functional interneuronal connectivity via gjs is sufficient to trigger epileptiform activity in the absence of ionotropic glutamatergic transmission. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available