4.7 Article

THE SOLAR ORIGIN OF SMALL INTERPLANETARY TRANSIENTS

Journal

ASTROPHYSICAL JOURNAL
Volume 734, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/734/1/7

Keywords

solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: heliosphere

Funding

  1. NASA [NNX11AD40G-45527, NNXIOAT06G]
  2. Academy of Finland [130298]
  3. Office of Naval Research
  4. Div Atmospheric & Geospace Sciences
  5. Directorate For Geosciences [1142837] Funding Source: National Science Foundation
  6. Academy of Finland (AKA) [130298, 130298] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

In this paper, we present evidence for magnetic transients with small radial extents ranging from 0.025 to 0.118 AU measured in situ by the Solar-Terrestrial Relations Observatory (STEREO) and the near-Earth Advanced Composition Explorer (ACE) and Wind spacecraft. The transients considered in this study are much smaller (< 0.12 AU) than the typical sizes of magnetic clouds measured near 1 AU (similar to 0.23 AU). They are marked by low plasma beta values, generally lower magnetic field variance, short timescale magnetic field rotations, and are all entrained by high-speed streams by the time they reach 1 AU. We use this entrainment to trace the origin of these small interplanetary transients in coronagraph images. We demonstrate that these magnetic field structures originate as either small or large mass ejecta. The small mass ejecta often appear from the tip of helmet streamers as arch-like structures and other poorly defined white-light features (the so-called blobs). However, we have found a case of a small magnetic transient tracing back to a small and narrow mass ejection erupting from below helmet streamers. Surprisingly, one of the small magnetic structures traces back to a large mass ejection; in this case, we show that the central axis of the coronal mass ejection is along a different latitude and longitude to that of the in situ spacecraft. The small size of the transient is related to the in situ measurements being taken on the edges or periphery of a larger magnetic structure. In the last part of the paper, an ejection with an arch-like aspect is tracked continuously to 1 AU in the STEREO images. The associated in situ signature is not that of a magnetic field rotation but rather of a temporary reversal of the magnetic field direction. Due to its open-field topology, we speculate that this structure is partly formed near helmet streamers due to reconnection between closed and open magnetic field lines. The implications of these observations for our understanding of the variability of the slow solar wind are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available