4.6 Article

Dispersal of exhaled air and personal exposure in displacement ventilated rooms

Journal

INDOOR AIR
Volume 12, Issue 3, Pages 147-164

Publisher

BLACKWELL MUNKSGAARD
DOI: 10.1034/j.1600-0668.2002.08126.x

Keywords

exhalation flow; contaminant distribution; personal exposure; full-scale experiments; CFD; displacement ventilation

Ask authors/readers for more resources

The influence of the human exhalation on flow fields, contaminant distributions, and personal exposures in displacement ventilated rooms is studied together with the effects of physical movement. Experiments are conducted in full-scale test rooms with life-sized breathing thermal manikins. Numerical simulations support the experiments. Air exhaled through the mouth can lock in a thermally stratified layer, if the vertical temperature gradient in breathing zone height is sufficiently large. With exhalation through the nose, exhaled air flows to the upper part of the room. The exhalation flow from both nose and mouth is able to penetrate the breathing zone of another person standing nearby. The stratification of exhaled air breaks down if there is physical movement in the room. As movement increases, the concentration distribution in the room will move towards a fully mixed situation. The protective effect of the boundary layer flow around the body of a moving person disappears at low speed, and is reduced for a seated person placed nearby due to horizontal air movements, which can also cause rebreathing of exhaled air for the seated person. The results indicate that the effect of the exhalation flow is no acute problem in most normal ventilation applications. However, exhalation and local effects caused by movement may be worth considering if one wishes to contain contaminants in certain areas, as in the case of tobacco smoking, in hospitals and clinics, or in certain industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available