4.8 Article

DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster

Journal

ANALYTICAL CHEMISTRY
Volume 74, Issue 17, Pages 4320-4327

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0257804

Keywords

-

Ask authors/readers for more resources

Ethidium intercalation has been investigated as a means of inducing binding of Au nanoparticles to DNA. The ethidium sites are attached to the nanoparticles as thiolate ligands, using 3,8-diamino-5-mercaptododecyl-6-phenylphenanthridinium (ethidium thiolate). Each nanoparticle bears only one or two ethidium thiolate ligands. The rest of the thiolate monolayer ligands on the monolayer-protected An clusters (MPCs) were either N-(2-mercaptopropionyl)glycine (tiopronin/ethidium MPC) or trimethyl-(mercaptoundecyl)ammonium (TMA/ethidium MPC). In solution mixtures of DNA and MPCs, the energy-transfer quenching of the ethidium ligands by the metal-like MPC core is partially released by ethidium binding to DNA, as observed by an increase in the intensity of ethidium fluorescence. Binding of the cationic TMA/ethidium MPC to DNA was efficient and rapid. The negatively charged tiopronin/ethidium MPC, in contrast, exhibits slow intercalation kinetics, relative to ethidium cation not attached to an MPC. The slow kinetics were analyzed as two competing binding interactions. The tiopronin/ethidium MPC binding to DNA was imaged by AFM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available